
Regular Expressions
vi / sed / grep / fgrep / egrep / awk

Unix Talk #2

2

What is a Regular Expression?
§ Pattern to match all or part of a line of text

– Expressed in a formal, albeit weird, language
– For example:

^.*:Mike

matches lines that start (^) with any string (.*) and contain a colon
followed by Mike

§ ^, . and * are called meta characters
– They do not represent themselves, but have other special meaning.

§ :, M, i, k and e are normal characters
– The do represent themselves

3

Where are
Regular Expressions Used?

§ Special commands that “know” about them
– vi

§ Uses them in searching for a string: /regexp/
§ Uses them in substitite command: s/regexp/replace/sed

– Edit a file (like vi) as a filter in a pipeline
… | sed editing-commands | …

– grep , fgrep (fixed grep) , egrep (extended grep)
§ Print lines of a file that match a regexp

– awk
§ Process input files looking for lines that match a regexp and

processing those lines

4

Regular expression

§ A regular expression is a pattern of
characters used for describing sets of
strings

§ A pattern or sequence of characters
– Upper and lower case
– Digits
– Space, underscore, etc

§ Metacharacters

5

Basic Regular Expressions
§ Patterns that match a single character

– All regular letters match themselves
a b z T Q 0 1 9

– . (a single dot) matches any single character except
newline.
§ In awk, dot can match newline also
§ (like ? in filename generation)

– A set of characters that matches any single character
from the set (just like filename generation)

[aeiou]
[a-z0-9]
[A-Za-z-]
[a-m]

6

Metacharacter
* Matches 0 or more occurrences of the
preceding char

[…] Matches any one of characters enclosed
between the brackets.
- dash indicates a range when inside sq
bkts.
[^ - negates what's inside brackets]

7

Metacharacter (con’t)

\ - backslash - escape character - just like before.
– \. means match a dot
– This means \ is a meta character
– \\ means match \

Positional indicators:
§ ^ anchor to beginning of line
§ $ anchor to end of line

8

A Simple Example Using sed
§ Try this example and see what happens …

STRING="Four score and seven years ago"

echo "Start: $STRING"

STRING=`echo $STRING | sed -e 's/and/or/'`

echo "Step1: $STRING"

STRING=`echo $STRING | sed -e 's/s..../xxxxx/'`

echo "Step2: $STRING"

STRING=`echo $STRING | sed -e 's/s..../xxxxx/'`
echo "Step3: $STRING"

9

§ "Some people, when confronted with a Unix
problem, think ‘I know, I’ll use sed.’ Now
they have two problems.”
- unknown (page 206 Unix Haters Group)

10

Anchoring the Match

§ Two rules:
– Normally, matches are unanchored … i.e., the

match can occur any place in the string.
– Normally, substitutions apply to only the first

match in the string.
§ To apply the substitution to all matches in the string,

append a 'g' following the last '/'.

11

Another Example

§ Try this
STRING="Four score and seven years ago”

echo $STRING | sed 's/^and/or/'

echo $STRING | sed 's/s..../xxxxx/g'

echo $STRING | sed 's/ago$/<END>/'

12

Regular expression examples
§ Peach
§ a*c

– cxxx, acxxx, aaacxxxx
§ a.c

– a+c, abc, match, a3c
§ [tT]he

– The, the
§ Ch[^0-9]

– Chapter, Chocolate
§ ^the

– Start with the
§ Friends$

– End with Friends

13

Regular expression examples

§ L..e
§ \$[0-9]*\.[0-9]
§ ^[0-9]file.dat
§ [^0-9]file.dat

§ MM-DD-YY or MM/DD/YY
– [0-1][0-9][-/][0-3][0-9][-/][0-9][0-9]

14

Named classes of characters

§ [0-9] ---OR --- [[:digit:]]
§ [a-z] --- OR --- [[:lower:]]
§ [A-Z] --- OR --- [[:upper:]]
§ [a-zA-Z] --- OR --- [[:alpha:]]
§ [a-zA-Z0-9] ---OR --- [[:alnum:]]

§ egrep ‘^[[:lower:]]*$’

15

Extended Metacharacter (egrep and awk)

Available in egrep and awk NOT in vi, sed, grep or
fgrep

? matches zero or one occurrence of the preceding
char

+ Matches 1 or more occurrences of the preceding
char

| Specifies that either the preceding or following
regular expression can be matched

() Groups regular expressions

16

Examples
§ “.*” matches all characters between the

quotations
§ ^$ matches blank lines
§ ^.*$ matches the entire line
§ Big(Computer)?
§ Compan(y|ies) # note: the | is a pipe symbol
§ SSN: [0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]
§ grep ‘\.H[123]’ ch0[12]

– ch01: .H1 “Contents of Distribution Tape”
– ch02: .H2 “A Quick Tour”

17

Repetition Examples

§ Consider a file named text containing:
We're off to see the wizard.
The wonderful wizard of oz.
What a wonderful wizard he was.
The end.

§ Try the following commands and explain the
output:
egrep 'f+' text
grep 'ff*' text
grep 'f\{2\}' text
egrep 'z?' text

18

Some More Examples
§ A price: \$[0-9]*\.[0-9][0-9]
§ A filename, at the start of a line, that starts with a digit

^[0-9]file\.dat
§ A filename, anyplace in the line, that starts with a non-digit

[^0-9]file\.dat
§ A social security number

[0-9]{3}-[0-9]{2}-[0-9]{4}
§ From 4 to 6 digits: [0-9]\{4, 6\}
§ A date - MM-DD-YY or MM/DD/YY:

[0-1][0-9][-/][0-3][0-9][-/][0-9][0-9]
§ A line containing only upper case letters:

^[A-Z]*$

19

Back References (tag)

§ vi, sed and grep family only
/.*\(love\).*\1.*$/

– Finds lines that contain ‘love’ at least twice
– The \(… \) is a way to parenthesize a part of

the regexp
– The \1 is a reference to what was matched by

the 1st regexp
– Can use up to nine tags (\1 … \9)

20

Replacement in sed and vi

§ Applies to substitute command:
– s/regexp/replacement/
– Replacement string can contain the

metacharacter ‘&’ which means the string that
was matched

§ Try this
STRING=“Start Again”
echo $STRING | sed 's/Again/& &/'

21

Replacement in sed and vi

§ Try:
echo $STRING | sed 's/Again/&ANOTHER&/'

§ Then try:
STRING=”Beastie Boys getting live on the spot”

echo $STRING | sed 's/Beastie/& & & &/'

22

Alternation

§ Only in egrep and awk
– regex1 | regex2 | regex3 …

§ Matches regex1 if it can
§ If not goes on to regex2
§ Etc. until one matches or they all fail

§ Example:
– egrep "Brown|Smith" file

§ Prints lines containing Brown or Smith or both

